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Abstract: Silphiperfol-5-en-3-01 (1) has been synthesized in five steps 
starting with enone 4 in an overall yield of 30%. Key step is a TMSCl 
assisted 1,4-addition of the Grignard reagent of acetal 2 to 4. - 

Within a screening program of odoriferous plants from wild sources of the 

Kashmir region of India' we recently isolated the new sesquiterpene alcohol 

(-)-silphiperfol-5-en-3-01 (la) as a constituent (~3%) from the essential 

oil of Artemisia laciniata together with small amounts of - 

Since the isolated sample showed a very pleasant odour we 

a synthesis of la to find out whether the observed odour - 

la or to any unseparated concomitant. - 
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its epimer lb. 2,3 
- 

were interested in 

really belongs to 

A convenient starting material is the enone 4, also used in the synthesis 

of silphiperfol-6-ene 4 and retigeranic acid.5 The shortest way to obtain 

racemic q6 consists in alkylation of the pyrrolidine enamine prepared from 

2-methylcyclopentanone (2) with 3-bromobutanone7 to give diketone 2. Sub- 

sequent treatment with KOH/EtOH results in cyclization and double bond mi- 

gration to furnish a mixture of 4 and its epimer (85:15) separable by flash 

chromatography. 

Key step of the synthesis is the 1,4-addition of the Griqnard reagent of 2 

to enone 4. - The Griqnard compound can be prepared from the corresponding iodo 

acetal 3, usual Mq turnings and 1,2_dibromoethane as entrainer. 8 Since the 

yield is modest (30-40%) due to radical coupling (Wurtz) and disproportiona- 

tion, a large excess of 5 is needed. However, this disadvantage is compensat- 

ed by the fact that the required iodo acetal 3 can be prepared (yield 92%) 

easily from commercially available tiqlic aldehyde by a one-pot procedure. 
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pyrrolidine, benzene, Dean-Stark trap, 16 h; b) MeCOCHBrMe, toluene, 
2 h reflux; then H20, 2 h reflux; c) KOH, EtOH, H20, 2 h reflux; 

7.7 eq. of 2, Mg/BrCH2CH2Br, ether, HMPA or TMEDA, TMSCl, CuBr.Me2S, 

-78OC, 20 h; e) HCl, acetone, r.t., 5 d; f) p-MeC6H40C(S)Cl, 

pyridine, THF, r.t., 16 h; g) 19O"C, 18 Torr; h) LAH, r.t., 30 min; 

L-Selectride@, -78°C 3r.t.; NaOH, H201. 

Our first attempts to effect the conjugate addition were disappointing. 

Under usual conditions (CuBr.Me2S, ether/MezS, -78°C + O'C) we obtained 

exclusively 1,2-addition followed by spontaneous dehydration. In the last 

years several groups reported a drastically improved efficiency of conjugate 

addition in the presence of TMSCl and nucleophilic addends such as HMPA 
IO 

or TMEDA. 
11 

Under such conditions we obtained the 1,4-adduct 5 together 

with varying amounts of its silyl enol ether, but without 1,2-adduct. In 

the best run we 

stereoisomers. 

tion led to the 

were able to isolate 66% of 5 as a complex mixture of dia- 

Acidic hydrolysis of this product with concomitant cycliza- 

aldol z, which was dehydrated by thermolysis of the corre- 
17 

sponding p-tolyl thionocarbonate4 to give the two epimeric ketones 8a,b.'" -- 

Now, the last step was to achieve stereoselective reduction. The use 

of LAH afforded the undesired thermodynamically more stable alcohol 9a,b 
13 
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predominantly (selectivity 95:5). But reduction with L-selectride occurred 
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from the less hindered u-face exclusively (selectivity 99:l) to provide la - 
along with its epimer B, identical in all spectral data'4 with the natural 

compounds. 

In summary, the total synthesis of silphiperfol-5-en-3-01 (1) has been 

accomplished in 30% overall yield from the known enone 4. The olfactive 

properties of 1 and related compounds are currently under investigation and 

will be reported elsewhere. An enantioselective synthesis of (-)-la is in - 
progress. 

Acknowledgement: J. B. is grateful to the Fonds der Chemischen Industrie for 
a grant. 
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@: 'H NMR (CDC13, 400 MHz): 6 = 1.00 (s, 4-Me), 1.01, 1.09 (2 d, J = 7 - 

Hz, 7-, g-Me, 1.61 (dd, J = 1.5; 1.5 Hz, 6-Me), - 1.90, 2.67 (ABd, J = 17.5 

and 1.5 resp. 9.5 Hz, 2-H2), 2.75 (q, br., J = 7 Hz, 7-H), 4.94 (q, hr., - 

J = 1.5 Hz, 5-H). - 13C NMR (CDC13, C-l - C-15): 6 = 44.6 (d), 42.5 (t), 

221.1 (s), 62.5 (s), 129.0 (d), 145.8 (s), 52.3 (d), 64.0 (s), 43.6 (d), 

34.7 (t), 33.7 (tl, 15.7, 19.1, 13.3, 14.7 (4 9). 

8b: - 'H NMR (CDC13, 400 MHz): 6 = 1.03 (s I 4-Me), 1.00, 1.09 (2 d, J = 7 

Hz, 7-, g-Me), 1.72 (d, J = 1.5 Hz, 6-Me - ), 1.87, 2.74 (ABd, J = 18.5 and 

6 resp. IO Hz, 2-H2), 2.34 (q, J = 7 Hz, 7-H) I 4.98 (q, br., J = 1.5 Hz, 

5-H). - 13C NMR (CDC13, C- 1 - C-15): 6 = 54.1 (d), 44.3 (t), 221.1 (s), 

63.6 (s), 127.9 (d), 147.1 (s), 55.1 (d) , 65.6 (s), 43.4 (d), 34.7 (t), 

28.8 (t), 18.3, 21.2, 16.0, 15.4 (4 q). 

13. - J 9a: 'H NMR (CDC13, 400 MHz): 6 = 0.96 (s, 4-Me), 0.95, 0.98 (2 d, = 7 

Hz, 7-, g-Me), 1.59 (dd, J = 1.5; 1.5 Hz, 6-Me), 2.60 (q, br., J = 7 Hz, 

7-H) r 3.73 (dd, J = 11; 6 Hz, 3-H), 5.17 (q, br., = 1.5 Hz, 5-H). - J 

13C NMR C-l - C-15): 6 = 46.8 38.9 79.9 59.1 (CDC13, (d), (t), (d), (s), 

127.1 (d), 143.4 (s), 51.4 (d), 63.5 (s), 43.3 (d), 35.3 (t), 34.8 (t), 

18.3, 19.8, 13.4, 14.8 (4 q). 

- J 9b: 'H NMR (CDC13, 400 MHz): 6 = 1.01 (s, 4-Me), 0.93, 0.97 (2 d, = 7 

Hz, 7-, g-Me), 1.70 (d, 2 = 1.5 Hz, 6-Me), 2.24 (q, J = 7 Hz, 7-H), 3.72 

(dd, J = II; 7 Hz, 3-H), 5.19 (q, br., J = 1.5 Hz, 5-H). - 13C NMR (CDC13, 

C-l - C-15): b = 58.9 (d), 38.6 (t), 80.0 (d), 60.1 (s), 126.8 (d), 145.0 

(s), 56.0 (d), 62.5 (s), 43.6 (d), 35.1 (t), 29.5 (t), 20.1, 20.9, 17.0, 

15.6 (4 q). 

14. la: 'H NMR (CDC13, 400 MHz): 6 = 1.02 (s, 4-Me), 0.97, 1.01 (2 J = 7 - d, - 

Hz, 7-, g-Me), 1.54 (dd, J = 1.5; 1.5 Hz, 6-Me), 2.63 (q, br., J = 7 Hz, 

7-H), 3.99 (d, br., J = 4.5 Hz, 3-H), 4.96 (q, br., = 1.5 Hz, 5-H). - J 

13C NMR C-l - C-15): 6 = 52.1 39.1 82.5 60.9 (CDC13, (d), (t), (d), (s), 

132.4 (d), 141.7 (s), 51.8 (d), 66.2 (s), 44.0 (d), 36.3 (t), 35.7 (t), 

15.0, 19.6, 14.4, 14.6 (4 q). 

- (CDC13, z lb: IH NMR 400 MHz): 6 = 1.08 0.98 = 7 (s, 4-Me), 0.95, (2 d, 

HZ, 7-, g-Me), 1.66 (d, J = 1.5 Hz, 6-Me), 2.32 (q, J = 7 Hz, 7-H), 4.00 

(d, br., J = 4 Hz, 3-H), 4.97 (q, br., J = 1.5 Hz, 5-H). - 13C NMR (CDC13, 

C-l - C-15): d = 64.5 (d), 39.0 (t), 83.0 (d), 61.7 (s), 132.2 (d), 143.3 

(s), 55.7 (d), 65.1 (s), 44.1 (d), 36.3 (t), 30.0 (t), 18.2, 20.1, 16.9, 

15.5 (4 q). 
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